## Probabilistic program annotations

JP Katoen ${ }^{a}$ AK McIver ${ }^{b}$ LA Meinicke ${ }^{b}$ CC Morgan ${ }^{c}$
${ }^{a}$ RWTH Aachen University, Germany
${ }^{b}$ Macquarie University, Australia
${ }^{c}$ University of New South Wales, Australia

## Qualitative programs

We can describe properties using Hoare triples:

$$
\begin{aligned}
& \{0 \leq N\} \quad \leftarrow \quad \text { if this holds before } \\
& \mathrm{x}, \mathrm{n}:=0,0 ; \\
& \text { while } \mathrm{n}<N \text { do } \\
& \quad(\mathrm{x}:=\mathrm{x}+1 \sqcap \text { skip }) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{0 \leq \mathrm{x} \leq \mathrm{n}=N\} \quad \leftarrow \text { then this holds after }
\end{aligned}
$$

## Qualitative programs

$\{P\} \operatorname{prog}\{Q\}$
when $\quad \sigma \rightarrow \operatorname{prog} \rightarrow \sigma^{\prime}$
then $\quad P . \sigma \Rightarrow Q \cdot \sigma^{\prime}$

## Qualitative programs

$$
\begin{aligned}
& \{P\} \quad \operatorname{prog}\{Q\} \quad \text { or equivalently } \quad P \Rightarrow \text { wp.prog. } Q \\
& \text { when } \quad \sigma \rightarrow \operatorname{prog} \rightarrow \sigma^{\prime} \\
& \text { then } \quad P . \sigma \Rightarrow Q . \sigma^{\prime}
\end{aligned}
$$

## Qualitative programs

If we want to verify a given Hoare triple:

$$
\begin{aligned}
& \{0 \leq N\} \\
& \mathrm{x}, \mathrm{n}:=0,0 ;
\end{aligned}
$$

while $\mathrm{n}<N$ do

$$
\begin{aligned}
& \quad(\mathrm{x}:=\mathrm{x}+1 \sqcap \text { skip }) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{0 \leq \mathrm{x} \leq \mathrm{n}=N\}
\end{aligned}
$$

## Qualitative programs

It is enough to find a valid program annotation from which it can be inferred:

$$
\begin{aligned}
& \{0 \leq N\} \\
& \mathrm{x}, \mathrm{n}:=0,0 ; \\
& \{0 \leq \mathrm{x} \leq \mathrm{n} \leq N\} \quad \leftarrow \quad \text { these extra annotations } \\
& \text { while } \mathrm{n}<N \text { do } \\
& \{0 \leq \mathrm{x} \leq \mathrm{n}<N\} \quad \leftarrow \quad \text { allow us to prove it } \\
& (\mathrm{x}:=\mathrm{x}+1 \sqcap \mathrm{skip}) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{0 \leq \mathrm{x} \leq \mathrm{n}=N\}
\end{aligned}
$$

## Valid program annotations

For all annotations $P, Q$ separated by annotation-free path_prog:
$\{P\}$ path_prog $\{Q\}$

## Valid program annotations

For example, for
$\ldots \quad\{P\}$ if $G$ then $\operatorname{prog}_{1}\{Q\}$ else $\operatorname{prog}_{2} \mathrm{fi} \ldots$
we require
$\{P\}$ "if $G$ then $\operatorname{prog}_{1} "\{Q\}$.

## Valid program annotations

For example, for
$\ldots \quad\{P\}$ if $G$ then $\operatorname{prog}_{1}\{Q\}$ else $\operatorname{prog}_{2} \mathrm{fi} \ldots$
we require

$$
\{P\} \quad[G] ; \operatorname{prog}_{1} \quad\{Q\}
$$

where $[G] \triangleq$ if $G$ then skip else magic fi .

## Quantitative programs

$$
x, n:=0,0
$$

while $\mathrm{n}<N$ do

```
        (x:= x+1 p\oplus skip); n:= n+1 
```


## Quantitative programs

```
x, n:= 0, 0;
while }\textrm{n}<N\mathrm{ do
    (x:= x+1 p\oplus skip); n:= n+1 
```

This program sets variable $x$ to a value in $[0, N]$ according to the binomial distribution with probability $p$.

## Quantitative programs

Probabilistic programs map each initial state $\sigma$ to (possibly a set of) final distribution(s) $\delta^{\prime}$ on states.

```
\sigma
\downarrow
x, n:=0,0;
while }\textrm{n}<N\mathrm{ do
od
\downarrow
```


## Quantitative programs

Probabilistic programs map each initial state $\sigma$ to (possibly a set of) final distribution(s) $\delta^{\prime}$ on states.

```
(\textrm{x}\mapstox,\textrm{n}\mapston)
x, n:=0, 0;
while \(\mathrm{n}<N\) do
```

$$
\left(x:=x+1_{p} \oplus \text { skip }\right) ; n:=n+1
$$

$$
\begin{aligned}
& \downarrow \\
& {[\mathrm{x}=0 \wedge \mathrm{n}=N] \times(1-p)^{N}+[\mathrm{x}=1 \wedge \mathrm{n}=N] \times\binom{ N}{1}(p)(1-p)^{N-1}+\ldots}
\end{aligned}
$$

## Quantitative Hoare Iogic (Mciver, Morgan 2005)

Annotations $P, Q$ are real-valued expressions on the program state.

```
{P} prog {Q}
when }\quad\sigma->\mathrm{ prog }->\mp@subsup{\delta}{}{\prime
then P.\sigma \leq expected value of Q over \delta'
```


## Quantitative Hoare Iogic (Mciver, Morgan 2005)

Annotations $P, Q$ are real-valued expressions on the program state.

```
{P} prog {Q} or equivalently P\leqwp.prog.Q
when }\quad\sigma->\mathrm{ prog }->\mp@subsup{\delta}{}{\prime
then P.\sigma \leq expected value of Q over \delta'
```


## Quantitative Hoare Iogic (Mciver, Morgan 2005)

Annotations $P, Q$ are real-valued expressions on the program state.

```
{P} }->\mathrm{ this is a lower bound on
prog
{Q} }->\mathrm{ the least expected value of this
when }\sigma->\mathrm{ prog }->\mp@subsup{\delta}{}{\prime
then P.\sigma \leq expected value of Q over }\mp@subsup{\delta}{}{\prime
```


## Quantitative Hoare logic (Mciver, Morgan 2005)

\{ [true] \}
$\mathrm{x}, \mathrm{n}:=0,0$;
while $\mathrm{n}<N$ do

$$
\begin{aligned}
& \quad\left(\mathrm{x}:=\mathrm{x}+1_{p} \oplus \text { skip }\right) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{[\mathrm{n} \geq N]\}
\end{aligned}
$$

## Quantitative Hoare logic (Mciver, Morgan 2005)

$$
\begin{aligned}
& \{[0 \leq N] \times p N\} \\
& \mathrm{x}, \mathrm{n}:=0,0 ;
\end{aligned}
$$

while $\mathrm{n}<N$ do

$$
\begin{aligned}
& \quad\left(\mathrm{x}:=\mathrm{x}+1_{p} \oplus \text { skip }\right) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{\mathrm{x}\}
\end{aligned}
$$

## Quantitative Hoare Iogic (Mciver, Morgan 2005)

$$
\begin{aligned}
& \{[0 \leq N] \times p N\} \\
& \times, \mathrm{n}:=0,0 ;
\end{aligned}
$$

while $\mathrm{n}<N$ do

$$
\begin{aligned}
& \left(\mathrm{x}:=\mathrm{x}+1_{p} \oplus \text { skip }\right) ; \mathrm{n}:=\mathrm{n}+1 \\
& \text { od } \\
& \{\mathrm{x}\}
\end{aligned}
$$

How do we prove it?
We need to find a valid quantitative program annotation !

## Valid probabilistic program annotations

What's that!?

## Valid probabilistic program annotations

1. Annotation at start and end of program.

- so that we can reason about the correctness of the program as a whole

2. At least one annotation along every program path.

- verification conditions involve only cycle free program fragments


## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

$$
\ldots \quad\{P\}\left(\mathrm{x}:=0\{Q\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) \quad \ldots
$$

## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

$$
\ldots \quad\{P\}\left(\mathrm{x}:=0\{Q\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) \quad \ldots
$$

What does $\{P\}$ " $x:=0 \frac{1}{2} \oplus^{\prime \prime}\{Q\}$ mean?

## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

$$
\ldots \quad\{P\}\left(\mathrm{x}:=0\{Q\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) \quad \ldots
$$

What does $\{P\}$ " $x:=0 \frac{1}{2} \oplus^{\prime \prime}\{Q\}$ mean?

Does it mean $\left\{\frac{1}{2} \times P\right\} x:=0\{Q\}$ ?

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(x:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus x:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(x:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus x:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

We have

$$
\left\{\frac{1}{2} \times 1\right\} \quad \mathrm{x}:=0 \quad\left\{\frac{1}{2}\right\}
$$

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(x:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus x:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

We have

$$
\begin{array}{lll}
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}:=0 & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}=1 & \left\{\frac{1}{2}\right\}
\end{array}
$$

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(\mathrm{x}:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

We have

$$
\begin{array}{lll}
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}:=0 & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}:=1 & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2}\right\} & \text { skip } & \left\{\frac{1}{2}\right\}
\end{array}
$$

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(\mathrm{x}:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

We have

$$
\begin{array}{lll}
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}:=0 & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2} \times 1\right\} & \mathrm{x}:=1 & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2}\right\} & \text { skip } & \left\{\frac{1}{2}\right\} \\
\left\{\frac{1}{2}\right\} & \text { skip } & \left\{\frac{1}{2}\right\}
\end{array}
$$

## Valid probabilistic program annotations

But that is too weak...

$$
\{1\} \quad\left(x:=0\left\{\frac{1}{2}\right\}_{\frac{1}{2}} \oplus x:=1\left\{\frac{1}{2}\right\}\right) \quad\left\{\frac{1}{2}\right\}
$$

We have

$$
\begin{array}{ll} 
& \left\{\frac{1}{2} \times 1\right\} \quad \mathrm{x}:=0 \quad\left\{\frac{1}{2}\right\} \\
& \left\{\frac{1}{2} \times 1\right\} \quad \mathrm{x}:=1 \\
& \left\{\frac{1}{2}\right\} \text { skip }\left\{\frac{1}{2}\right\} \\
& \left\{\frac{1}{2}\right\} \text { skip }\left\{\frac{1}{2}\right\} \\
\text { but } \quad\{1\} \quad\left(\mathrm{x}:=0 \frac{1}{2} \oplus \mathrm{x}:=1\right) \quad\left\{\frac{1}{2}\right\} ?
\end{array}
$$

## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

$$
\ldots \quad\{P\}\left(\mathrm{x}:=0\{Q\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) \quad \ldots
$$

What does $\{P\}$ " $x:=0 \frac{1}{2} \oplus^{\prime \prime}\{Q\}$ mean?

## Valid probabilistic program annotations

What else? Can we put annotations wherever we want?

$$
\ldots \quad\{P\}\left(\mathrm{x}:=0\{Q\}_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) \quad \ldots
$$

What does $\{P\}$ "x: $=0 \frac{1}{2} \oplus^{\prime \prime}\{Q\}$ mean?
Does it mean $\{P\} \mathrm{x}:=0\{Q\}$ ?

## Valid probabilistic program annotations

But that is too strong ...

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0\{[x=0]\}_{\frac{1}{2}} \oplus x:=1\{[x=0]\}\right) \quad\{[x=0]\}
$$

## Valid probabilistic program annotations

But that is too strong...

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0\{[x=0]\}_{\frac{1}{2}} \oplus x:=1\{[x=0]\}\right) \quad\{[x=0]\}
$$

We have

$$
\left\{\frac{1}{2}\right\} \quad x:=0 \quad\{[x=0]\}
$$

## Valid probabilistic program annotations

But that is too strong...

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0\{[x=0]\}_{\frac{1}{2}} \oplus x:=1\{[x=0]\}\right) \quad\{[x=0]\}
$$

We have

$$
\begin{array}{lll}
\left\{\frac{1}{2}\right\} & x:=0 & \{[x=0]\} \\
\left\{\frac{1}{2}\right\} & x:=1 & \{[x=0]\}
\end{array}
$$

## Valid probabilistic program annotations

But that is too strong...

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0\{[x=0]\}_{\frac{1}{2}} \oplus x:=1\{[x=0]\}\right) \quad\{[x=0]\}
$$

We have

$$
\begin{array}{rlr}
\left\{\frac{1}{2}\right\} & x:=0 & \{[x=0]\} \\
\left\{\frac{1}{2}\right\} & x:=1 & \{[x=0]\}
\end{array}
$$

## Valid probabilistic program annotations

But that is too strong...

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0\{[x=0]\}_{\frac{1}{2}} \oplus x:=1\{[x=0]\}\right) \quad\{[x=0]\}
$$

We have

$$
\begin{array}{lll}
\left\{\frac{1}{2}\right\} & x:=0 & \{[x=0]\} \\
\left\{\frac{1}{2}\right\} & x:=1 & \{[x=0]\}
\end{array}
$$

but $\left\{\frac{1}{2}\right\} \quad\left(x:=0{ }_{\frac{1}{2}} \oplus x:=1\right) \quad\{[x=0]\} \ldots$

## Valid probabilistic program annotations

Clearly we need to treat branching paths together somehow...

## Valid probabilistic program annotations

But even if we try and treat them together ...

$$
\begin{aligned}
& \vdots \\
& \{P\} \\
& \left(x:=0_{\frac{1}{2}} \oplus \mathrm{x}:=1\right) ; \\
& \text { if } \mathrm{x}=0 \text { then } \mathrm{y}:=0\{Q\} \text { else } \mathrm{y}:=1 \mathrm{fi} \\
& \vdots
\end{aligned}
$$

## Valid probabilistic program annotations

But even if we try and treat them together ...

$$
\begin{aligned}
& \vdots \\
& \{P\} \\
& \left(x:=0^{\frac{1}{2}} \oplus \mathrm{x}:=1\right) ; \\
& \text { if } \mathrm{x}=0 \text { then } \mathrm{y}:=0\{Q\} \text { else } \mathrm{y}:=1 \mathrm{fi} \\
& \vdots
\end{aligned}
$$

What does $\{P\}$ " $\left(x:=0 \frac{1}{2} \oplus \mathrm{x}:=1\right)$; if $\mathrm{x}=0$ then $\mathrm{y}:=0^{\prime \prime} \quad\{Q\} \quad$ mean?

## Valid probabilistic program annotations

But even if we try and treat them together ...

$$
\begin{aligned}
& \vdots \\
& \{P\} \\
& \left(x:=0^{\frac{1}{2}} \oplus \mathrm{x}:=1\right) ; \\
& \text { if } \mathrm{x}=0 \text { then } \mathrm{y}:=0\{Q\} \text { else } \mathrm{y}:=1 \mathrm{fi} \\
& \vdots
\end{aligned}
$$

Does it mean $\{P\}\left(\mathrm{x}:=0 \frac{1}{2} \oplus \mathrm{x}:=1\right) ;[\mathrm{x}=0]$ then $\mathrm{y}:=0 \quad\{Q\} \quad ?$
where $[x=0] \triangleq$ if $x=0$ then skip else magic fi .

## Valid probabilistic program annotations

But even if we try and treat them together ...

$$
\begin{aligned}
& \left\{\frac{1}{2}\right\} \\
& \left(x:=0 \frac{1}{2} \oplus x:=1\right) ; \\
& \text { if } x=0 \text { then } \mathrm{y}:=0 \quad\{[\mathrm{y}=3]\} \text { else } \mathrm{y}:=1 \quad\{[\mathrm{y}=3]\} \mathrm{fi} \\
& \{[\mathrm{y}=3]\}
\end{aligned}
$$

We have

$$
\left\{\frac{1}{2}\right\}\left(x:=0 \frac{1}{2} \oplus x:=1\right) ;[x=0] ; y:=0 \quad\{[y=3]\}
$$

## Valid probabilistic program annotations

But even if we try and treat them together ...

$$
\begin{aligned}
& \left\{\frac{1}{2}\right\} \\
& \left(x:=0 \frac{1}{2} \oplus x:=1\right) ; \\
& \text { if } x=0 \text { then } y:=0\{[y=3]\} \text { else } \mathrm{y}:=1 \quad\{[y=3]\} \text { fi } \\
& \{[y=3]\}
\end{aligned}
$$

We have

$$
\left\{\frac{1}{2}\right\} \quad\left(x:=0 ; y:=0_{\frac{1}{2}} \oplus \text { magic }\right) \quad\{[y=3]\}
$$

## Valid probabilistic program annotations

But even if we try and treat them together...

$$
\begin{aligned}
& \left\{\frac{1}{2}\right\} \\
& \left(x:=0 \frac{1}{2} \oplus x:=1\right) \\
& \text { if } x=0 \text { then } \mathrm{y}:=0\{[y=3]\} \text { else } \mathrm{y}:=1\{[y=3]\} \text { fi } \\
& \{[y=3]\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\{\frac{1}{2}\right\}\left(x:=0 \frac{1}{2} \oplus x:=1\right) ;[x=0] ; y:=0 \quad\{[y=3]\} \\
& \left\{\frac{1}{2}\right\}\left(x:=0 \frac{1}{2} \oplus x:=1\right) ;[x \neq 0] ; y:=1 \quad\{[y=3]\} \\
& \{[y=3]\} \text { skip }\{[y=3]\} \\
& \{[y=3]\} \text { skip }\{[y=3]\} \\
& \text { but } \quad\left\{\frac{1}{2}\right\} \quad\left(x:=0 \frac{1}{2} \oplus x:=1\right) \text {; if } \mathrm{x}=0 \text { then } \mathrm{y}:=0 \text { else } \mathrm{y}:=1 \mathrm{fi} \quad\{[\mathrm{y}=3]\} \text { ? }
\end{aligned}
$$

## Valid probabilistic program annotations

We don't constrain where you can put annotations ...

But we do sometimes require you to add more!

## Valid probabilistic program annotations

3. If there is an interior annotation following a choice point but before the choice rejoins:


## Valid probabilistic program annotations

3. If there is an interior annotation following a choice point but before the choice rejoins:


Then we must add extra annotations:


## Valid probabilistic program annotations

4. For all annotations $P, Q$ separated by annotation-free path_prog: If $P$ is not at a choice point:

$$
\{P\} \text { path_prog }\{Q\}
$$

## Valid probabilistic program annotations

4. If annotation $P$ is at a choice point:

$$
\ldots \quad\{P\}\left(\{Q\} ; \operatorname{prog}_{1} \frac{1}{2} \oplus\{R\} \operatorname{prog}_{2}\right) \ldots
$$

Condition $\{P\}$ " ${ }_{\frac{1}{2}} \oplus^{\prime \prime}\{Q\}$ does not make sense...

## Valid probabilistic program annotations

4. If annotation $P$ is at a choice point:

$$
\ldots \quad\{P\}\left(\{Q\} ; \operatorname{prog}_{1} \frac{1}{2} \oplus\{R\} \operatorname{prog}_{2}\right) \ldots
$$

We require $\quad P \leq \frac{1}{2} \times Q+\frac{1}{2} \times R$

## Valid probabilistic program annotations

4. If annotation $P$ is at a choice point:
$\ldots \quad\{P\}$ if $G$ then $\{Q\} ; \operatorname{prog}_{1}$ else $\{R\} \operatorname{prog}_{2} \mathrm{fi} \ldots$

We require $P \leq[G] \times Q+[\neg G] \times R$.

## Valid probabilistic program annotations

4. If annotation $P$ is at a choice point:
$\ldots \quad\{P\}$ while $G$ then $\{Q\}$ body od $\{R\} \ldots$

We require $P \leq[G] \times Q+[\neg G] \times R$.

## So ...

Now we know what a probabilistic program annotation is.

How do we find them?

## Generating qualitative program annotations

Possible for annotations of restricted forms for restricted types of programs.

Methods include

- iterative fixed-point methods like abstract interpretation (Cousot and Cousot, 1977), and
- constraint-based approaches (e.g., Colón et al., 2003; Podelski and Rybalchenko, 2004; Cousot, 2005; Monniaux, 2000; Gulwani et al., 2008).


## Constraint-based approaches

1. Speculatively annotate with parametrised expressions of a given form.
2. Calculate verification conditions.
3. Translate them to machine solvable form.
4. Solve for the annotation parameters using a constraint solver.

How can we adapt these methods to our needs?

## How can we adapt these methods to our

## needs?

Define a constraint-based method for generating linear program annotations for linear probabilistic programs.

It generalises the approach of Colón et al. (2003)

## A constraint-based approach

For linear programs ...

```
x, n:=0,0; }\leftarrow variables are real-valued
while n<N do }\leftarrow\mathrm{ guards are linear constraints
od (x:=x+1 p\oplus skip); n:= n+1 \leftarrow updates are linear expressions
```


## A constraint-based approach

```
x, n:= 0, 0;
while }\textrm{n}<N\mathrm{ do
    (x:=x+1 p}\oplus\mathrm{ skip); n:= n+1
od;
skip
```

1. Speculatively annotate with propositionally linear expressions

$$
\begin{gathered}
\sum_{m:[1 . . M]}\left[\bigwedge_{n:[1 . . N]} \alpha_{(m n, 1)} \mathrm{x}_{1}+\ldots+\alpha_{(m n, X)} \mathrm{x}_{X}+\alpha_{(m n, X+1)} \ll 0\right] \\
\times\left(\beta_{(m, 1)} \mathrm{x}_{1}+\ldots+\beta_{(m, X)} \mathrm{x}_{X}+\beta_{(m, X+1)}\right)
\end{gathered}
$$

where $\mathrm{x}_{i}$ are program variables, $\alpha_{i}, \beta_{i}$ are parameters and $\ll$ is $\leq$ or $<$.

## A constraint-based approach

```
\(\{[0 \leq N] \times p N\}\)
\(\mathrm{x}, \mathrm{n}:=0,0\);
\(\{[0 \leq \mathrm{x} \leq \mathrm{n} \leq N+1] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
while \(\mathrm{n}<N\) do
\(\{[0 \leq \mathrm{x} \leq \mathrm{n}<N] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
    ( \(\mathrm{x}:=\mathrm{x}+1_{p} \oplus\) skip) \(; \mathrm{n}:=\mathrm{n}+1\)
od;
\(\{[0 \leq \mathrm{x} \leq \mathrm{n} \leq N+1 \wedge \mathrm{n} \geq N] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
skip
\{ \(x\) \}
```

1. Speculatively annotate with propositionally linear expressions

$$
\begin{aligned}
& \sum_{m:[1 . . M]}\left[\bigwedge_{n:[1 . . N]} \alpha_{(m n, 1)} \mathrm{x}_{1}+\ldots+\alpha_{(m n, X)} \mathrm{x}_{X}+\alpha_{(m n, X+1)} \ll 0\right] \\
& \times\left(\beta_{(m, 1)} \mathrm{x}_{1}+\ldots+\beta_{(m, X)^{\mathrm{x}}}+\beta_{(m, X+1)}\right)
\end{aligned}
$$

where $\mathrm{x}_{i}$ are program variables, $\alpha_{i}, \beta_{i}$ are parameters and $\ll$ is $\leq$ or $<$.

## A constraint-based approach

```
\(\{[0 \leq N] \times p N\}\)
\(\mathrm{x}, \mathrm{n}:=0,0\);
\(\{[0 \leq \mathrm{x} \leq \mathrm{n} \leq N+1] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
while \(\mathrm{n}<N\) do
\(\{[0 \leq \mathrm{x} \leq \mathrm{n}<N] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
    ( \(\mathrm{x}:=\mathrm{x}+1_{p} \oplus\) skip); \(\mathrm{n}:=\mathrm{n}+1\)
od;
\(\{[0 \leq \mathrm{x} \leq \mathrm{n} \leq N+1 \wedge \mathrm{n} \geq N] \times(\alpha \mathrm{x}-\beta \mathrm{n}+\gamma)\}\)
skip
\{x\}
```

2. Calculate verification conditions
[Inequalities between propositionally linear expressions.] E.g.

$$
\leq \begin{aligned}
& {[0 \leq \mathrm{x} \leq \mathrm{n}<N] \times(\alpha \mathrm{x}+\beta \mathrm{n}+\gamma)} \\
& \\
& {[0 \leq \mathrm{x}+1 \leq \mathrm{n}+1 \leq N+1] \times(p \alpha(\mathrm{x}+1)+p \beta(\mathrm{n}+1)+p \gamma)+} \\
& \\
& {[0 \leq \mathrm{x} \leq \mathrm{n}+1 \leq N+1] \times((1-p) \alpha \mathrm{x}+(1-p) \beta(\mathrm{n}+1)+(1-p) \gamma)}
\end{aligned}
$$

## A constraint-based approach

```
{[0\leqN]\timespN }
x, n:= 0, 0;
{[0\leqx\leqn\leqN+1]\times(\alphax-\betan+\gamma)}
while n<N do
{[0\leqx\leqn<N]\times(\alphax-\betan+\gamma)}
    (x:=x+1 p\oplus skip); n:= n+1
od;
{[0\leqx\leqn}\leqN+1\wedge\textrm{n}\geqN]\times(\alpha\textrm{x}-\beta\textrm{n}+\gamma)
skip
{x}
```

3. Translate them to universally quantified Boolean expressions on linear inequalities
E.g. (assuming non-negativity of expressions on previous slide)

$$
[0 \leq \mathrm{x} \leq \mathrm{n}<N] \Rightarrow[0 \leq p \alpha+\beta]
$$

## A constraint-based approach

Then we proceed just as Colón et al (2003) for qualitative case.
4. Translate them to machine-solvable form.
[Use Farka's lemma to translate to existentially quantified, polynomial constraints on annotation parameters.]
5. Solve for annotation parameters using constraint solvers.
[E.g. REDLOG]

## A constraint-based approach

```
{[0\leqN]\timespN }
x, n:= 0, 0;
{[0\leqx\leqn \leqN+1]\times(x-pn+pN)}
while n}<N\mathrm{ do
{[0\leqx\leqn<N]\times(x-pn+pN)}
    (x:= x+1 p}\oplus\mathrm{ skip); n:= n+1
od;
{[0\leqx\leqn}\leqN+1\wedgen\geqN]\times(x-pn+pN)
skip
{x}
```

"Fully automated" method?

## "Fully automated" method?

We envisage ourselves using it interactively.

## Conclusion

We have defined what valid probabilistic program annotations are.
And we have proposed a contraint-based method of generating linear forms of annotations for linear probabilistic programs.

## Alternative automated methods: comparison

We could use model checking:

- Apply MDP model checking. [LiQuor, PRISM]
- works for program instances, but no general solution
- Use abstraction-refinement techniques. [PASS, PRISM]
- Ioop analysis with real variables does not work well
- Check language equivalence. [APEX]
- cannot deal with parametrised probabilistic programs

