
Faculty of Science
Information and Computing Sciences

1

From algebra to abstract machine
IFIP WG 2.1, Brandenburg

Wouter Swierstra

joint work with Carlos Tomé Cortiñas

Faculty of Science
Information and Computing Sciences

2

Evaluation

We can define a small expression language:

data Expr : Set where
Add : Expr → Expr → Expr
Val : Nat → Expr

And define a recursive evaluation function:

eval : Expr → Nat
eval (Expr l r) = eval l + eval r
eval (Val i) = i

Faculty of Science
Information and Computing Sciences

3

Or using folds…

Instead of defining the evaluator using recursion directly, we can define
it using the fold over expressions:

foldExpr : (a → a → a) → (Nat → a) → Expr → a
foldExpr add val (Add l r) =

add (foldExpr add val l) (foldExpr add val r)
foldExpr add val (Val i) = val i

eval :: Expr → Nat
eval = foldExpr _+_ id

Faculty of Science
Information and Computing Sciences

4

A problem

> eval (Add (Add (Add ... (Add (Val 1) (Val 1))....)))
*** Exception: stack overflow

What went wrong?

The foldExpr function needs to fully evaluate both subtrees of an
addition before the addition function can trigger further reduction.

For large subtrees, this involves pushing stack frames for each recursive
call until we have reached the leaves.

As the stack grows, it may overflow on large inputs.

Faculty of Science
Information and Computing Sciences

4

A problem

> eval (Add (Add (Add ... (Add (Val 1) (Val 1))....)))
*** Exception: stack overflow

What went wrong?

The foldExpr function needs to fully evaluate both subtrees of an
addition before the addition function can trigger further reduction.

For large subtrees, this involves pushing stack frames for each recursive
call until we have reached the leaves.

As the stack grows, it may overflow on large inputs.

Faculty of Science
Information and Computing Sciences

5

A solution: a tail-recursive evaluator

data Stack : Set where
Top : Stack
Left : Expr → Stack → Stack
Right : Nat → Stack → Stack

mutual
load : Expr → Stack → Nat
load (Val n) stk = unload n stk
load (Add e1 e2) stk = load e1 (Left e2 stk)

unload : Nat → Stack → Nat
unload v Top = v
unload v (Right v' stk) = unload (v' + v) stk
unload v (Left r stk) = load r (Right v stk)

Faculty of Science
Information and Computing Sciences

6

Termination woes

mutual
load : Expr → Stack → Nat
...
unload : Nat → Stack → Nat
unload v (Right v' stk) = unload (v' + v) stk
unload v (Left r stk) = load r (Right v stk)

This definition, however, is not obviously structurally recursive – and
therefore rejected by Agda.

The problematic call is in the last line – why is it safe to call load on
some expression that you happen to find on the stack?

Faculty of Science
Information and Computing Sciences

7

Folds vs tail-recursive functions

Folds closely follow the structure of our data…

… but may lead to stack overflows.

Defining a tail-recursive evaluator fixes this last problem…

… but we’ve lost the structural recursion that guarantees termination.

Challenge: How to show the tail-recursive evaluator terminates? And can
we prove that it produces the same result as the fold-based evaluator?

Faculty of Science
Information and Computing Sciences

7

Folds vs tail-recursive functions

Folds closely follow the structure of our data…

… but may lead to stack overflows.

Defining a tail-recursive evaluator fixes this last problem…

… but we’ve lost the structural recursion that guarantees termination.

Challenge: How to show the tail-recursive evaluator terminates? And can
we prove that it produces the same result as the fold-based evaluator?

Faculty of Science
Information and Computing Sciences

7

Folds vs tail-recursive functions

Folds closely follow the structure of our data…

… but may lead to stack overflows.

Defining a tail-recursive evaluator fixes this last problem…

… but we’ve lost the structural recursion that guarantees termination.

Challenge: How to show the tail-recursive evaluator terminates? And can
we prove that it produces the same result as the fold-based evaluator?

Faculty of Science
Information and Computing Sciences

7

Folds vs tail-recursive functions

Folds closely follow the structure of our data…

… but may lead to stack overflows.

Defining a tail-recursive evaluator fixes this last problem…

… but we’ve lost the structural recursion that guarantees termination.

Challenge: How to show the tail-recursive evaluator terminates? And can
we prove that it produces the same result as the fold-based evaluator?

Faculty of Science
Information and Computing Sciences

7

Folds vs tail-recursive functions

Folds closely follow the structure of our data…

… but may lead to stack overflows.

Defining a tail-recursive evaluator fixes this last problem…

… but we’ve lost the structural recursion that guarantees termination.

Challenge: How to show the tail-recursive evaluator terminates? And can
we prove that it produces the same result as the fold-based evaluator?

Faculty of Science
Information and Computing Sciences

8

Plan of attack

1. Tease apart the mutual recursion in the load-unload functions;

2. Iteratively call unload to navigate between the leaves of our tree,
until we produce a value;

3. Show that each recursive call is to a ‘smaller’ Stack × Nat (or
configuration) – and therefore is guaranteed to terminate.

4. Prove that the result produced in this style is equal to our original
evaluator.

5. Generalize all these steps to work for any function defined as a fold
over an algebraic data type.

Faculty of Science
Information and Computing Sciences

9

Breaking the mutual recursion

load : Expr → Stack → (Nat × Stack) ⊎ Nat
load (Val n) stk = inj1 (n , stk)
load (Add e1 e2) stk = load e1 (Left e2 stk)

unload : Nat → Stack → (Nat × Stack) ⊎ Nat
unload v Top = inj2 v
unload v (Right v' stk) = unload (v' + v) stk
unload v (Left r stk) = load r (Right v stk)

The load function no longer calls unload upon reaching a value, instead
it returns a new configuration.

The unload function no longer computes the final result – it may also
return a new configuration, if load does.

Instead of consuming the whole tree, we stop at the leaves.

Faculty of Science
Information and Computing Sciences

10

Iterating through the tree

tail-rec-eval : Expr → Nat
tail-rec-eval e = rec (load e Top)

where
rec : (Nat × Stack) → Nat
rec (n , stk) with unload n stk
... | inj1 (n' , stk') = rec (n' , stk')
... | inj2 v = v

We can now call unload over and over again until the stack is empty and
we have the final value.

But why does this terminate? The result of calling unload is not
structurally smaller in any way…

Faculty of Science
Information and Computing Sciences

10

Iterating through the tree

tail-rec-eval : Expr → Nat
tail-rec-eval e = rec (load e Top)

where
rec : (Nat × Stack) → Nat
rec (n , stk) with unload n stk
... | inj1 (n' , stk') = rec (n' , stk')
... | inj2 v = v

We can now call unload over and over again until the stack is empty and
we have the final value.

But why does this terminate? The result of calling unload is not
structurally smaller in any way…

Faculty of Science
Information and Computing Sciences

11

Well-founded recursion

When a function f is not obviously structurally recursive, well-founded
recursion can be used to offer an explanation why it terminates.

The idea is that when defining f(a), we’re allowed to call f on any
argument ‘smaller than’ a…

… provided we cannot construct infinitely long decreasing chains, i.e., any
series of calls terminates.

The canonical example is quickSort, where you make recursive calls to
strictly shorter lists that are not the immediate tail of the list.

Problem: What relation can we find between the configurations of our
evaluator?

Faculty of Science
Information and Computing Sciences

11

Well-founded recursion

When a function f is not obviously structurally recursive, well-founded
recursion can be used to offer an explanation why it terminates.

The idea is that when defining f(a), we’re allowed to call f on any
argument ‘smaller than’ a…

… provided we cannot construct infinitely long decreasing chains, i.e., any
series of calls terminates.

The canonical example is quickSort, where you make recursive calls to
strictly shorter lists that are not the immediate tail of the list.

Problem: What relation can we find between the configurations of our
evaluator?

Faculty of Science
Information and Computing Sciences

12

A few observations

Each configuration of our evaluator, that is Stack × Nat pair,
corresponds uniquely to a leaf in our original input.

After each call to unload we navigate to the ‘next’ leaf to the right.

As our input is finite, this process terminates.

Now to make this precise…

Faculty of Science
Information and Computing Sciences

13

One problem

The Stack data type is a variation of zippers, where we can easily
navigate up and down through a tree.

The parent node of the current subtree in focus is stored at the head of
the list – making it easy to move upwards.

But now we want to compare two positions in the overall input
expression, rather than navigate to immediate neighbours – our stack is
backwards.

Faculty of Science
Information and Computing Sciences

13

One problem

The Stack data type is a variation of zippers, where we can easily
navigate up and down through a tree.

The parent node of the current subtree in focus is stored at the head of
the list – making it easy to move upwards.

But now we want to compare two positions in the overall input
expression, rather than navigate to immediate neighbours – our stack is
backwards.

Faculty of Science
Information and Computing Sciences

14

Well-founded recursion

If we assume our stacks are reversed, we can define the following
relation to relate two positions in the original input:

data _<_ : Stack → Stack → Set where
<-StepR : s1 < s2 → Right n s1 < Right n s2
<-StepL : s1 < s2 → Left e s1 < Left e s2
<-Base : (Right n :: s1) < (Left e2 :: s2)

But this relation is not well-founded in general…

… but we can show it is well-founded if we embellish it with the invariant
that we only ever compare positions in the same original input tree.

Faculty of Science
Information and Computing Sciences

14

Well-founded recursion

If we assume our stacks are reversed, we can define the following
relation to relate two positions in the original input:

data _<_ : Stack → Stack → Set where
<-StepR : s1 < s2 → Right n s1 < Right n s2
<-StepL : s1 < s2 → Left e s1 < Left e s2
<-Base : (Right n :: s1) < (Left e2 :: s2)

But this relation is not well-founded in general…

… but we can show it is well-founded if we embellish it with the invariant
that we only ever compare positions in the same original input tree.

Faculty of Science
Information and Computing Sciences

14

Well-founded recursion

If we assume our stacks are reversed, we can define the following
relation to relate two positions in the original input:

data _<_ : Stack → Stack → Set where
<-StepR : s1 < s2 → Right n s1 < Right n s2
<-StepL : s1 < s2 → Left e s1 < Left e s2
<-Base : (Right n :: s1) < (Left e2 :: s2)

But this relation is not well-founded in general…

… but we can show it is well-founded if we embellish it with the invariant
that we only ever compare positions in the same original input tree.

Faculty of Science
Information and Computing Sciences

15

What is still missing?

1. Proof that this relation is well-founded (requires careful choice of
types, but not too hard);

2. Proof that the unload function navigates to smaller configurations
(induction over the stacks, 200loc, mostly bookkeeping).

3. Proof relating the tail-recursive evaluator to the original evaluator
(follows almost immediately, using well-founded recursion)

These details won’t be in the talk – but we have a draft paper online

Faculty of Science
Information and Computing Sciences

15

What is still missing?

1. Proof that this relation is well-founded (requires careful choice of
types, but not too hard);

2. Proof that the unload function navigates to smaller configurations
(induction over the stacks, 200loc, mostly bookkeeping).

3. Proof relating the tail-recursive evaluator to the original evaluator
(follows almost immediately, using well-founded recursion)

These details won’t be in the talk – but we have a draft paper online

Faculty of Science
Information and Computing Sciences

16

Generalizing further

1. Instead of fixing our Expr data type, we can define a universe of
regular data types;

2. The configurations, Stack × Nat, are particular to our data type
and evaluator. McBride’s dissections give a generic construction for
any data type

3. We can generalize our load and unload functions accordingly;

4. And show that a generic version of the _<_ relation is well-founded;

5. And define a generic tail-recursive evaluator, mapping any algebra
to an abstract machine.

6. And prove that this abstract machine terminates and satisfies its
specification.

Faculty of Science
Information and Computing Sciences

17

Polynomial functors

data Reg : Set where
Zero : Reg
One : Reg
I : Reg
K : (A : Set) → Reg
+ : Reg → Reg → Reg
* : Reg → Reg → Reg

el : Reg → Set → Set

By taking the fix-point of the functors arising from Reg, we can represent
a recursive data type.

Faculty of Science
Information and Computing Sciences

18

Generic folds

data Fix (R : Reg) : Set where
In : el R (Fix R) → Fix R

cata : (R : Reg) → (el R X → X) → Fix R → X
cata R alg (In t) = alg (fmap R (cata R alg) t)

Example:

exprF : R
exprF = K Nat + (I * I)

cataExpr = cata exprF

eval : Fix exprF → Nat
eval = cataExpr [id , _+_]

Faculty of Science
Information and Computing Sciences

19

Dissections

Dissections represent ‘one-hole contexts’ – where the elements to the
left and right may be of different types.

∇ : (R : Reg) → (Set → Set → Set)
∇ I X Y = ⊤
∇ (R + Q) X Y = ∇ R X Y ⊎ ∇ Q X Y
∇ (R * Q) X Y = ∇ R X Y × el Q Y ⊎ el R X × ∇ Q X Y
∇ _ X Y = ⊥

D : (R : Reg) → Set → Set → Set
D R X Y = ∇ R X Y × Y

For example, D exprF (Fix exprF) Nat ≈ Nat ⊎ Fix exprF

Faculty of Science
Information and Computing Sciences

20

Generic configurations

Each configuration of our abstract machine consists of:

▶ a leaf (a value of our data type without recursive subtrees);
▶ a stack, given by a list of dissections storing:

▶ unevaluated subtrees
▶ or the partial results of evaluating subtrees (and a proof that these

are equal to the fold)

If we extend our _<_ relation to these configurations and show it is
well-founded, we can write a generic version of our tail-recursive
traversal.

Faculty of Science
Information and Computing Sciences

20

Generic configurations

Each configuration of our abstract machine consists of:

▶ a leaf (a value of our data type without recursive subtrees);
▶ a stack, given by a list of dissections storing:

▶ unevaluated subtrees
▶ or the partial results of evaluating subtrees (and a proof that these

are equal to the fold)

If we extend our _<_ relation to these configurations and show it is
well-founded, we can write a generic version of our tail-recursive
traversal.

Faculty of Science
Information and Computing Sciences

21

Results

tail-rec-cata : (R : Reg) → (el R X → X) → Fix R → X

correctness : (R : Reg) → (alg : el R X → X) (t : Fix R) →
cata R alg t ≡ tail-rec-cata R alg t

The generic constructions are a bit messier than what I’ve shown on the
slides…

▶ what is a leaf, generically?
▶ recording intermediate correctness proofs;
▶ ‘reversing’ stacks to compare them easily;
▶ ensuring that we only ever consider decompositions of the same

original input;
▶ …

Faculty of Science
Information and Computing Sciences

21

Results

tail-rec-cata : (R : Reg) → (el R X → X) → Fix R → X

correctness : (R : Reg) → (alg : el R X → X) (t : Fix R) →
cata R alg t ≡ tail-rec-cata R alg t

The generic constructions are a bit messier than what I’ve shown on the
slides…

▶ what is a leaf, generically?
▶ recording intermediate correctness proofs;
▶ ‘reversing’ stacks to compare them easily;
▶ ensuring that we only ever consider decompositions of the same

original input;
▶ …

Faculty of Science
Information and Computing Sciences

22

Questions?

See our draft paper
From algebra to abstract machine: a verified generic construction, Carlos
Tomé Cortiñas and Wouter Swierstra, TyDe 2018

Faculty of Science
Information and Computing Sciences

22

Questions?
See our draft paper
From algebra to abstract machine: a verified generic construction, Carlos
Tomé Cortiñas and Wouter Swierstra, TyDe 2018

